A total of 605 eligible respondents took part in this survey (population size 1630046161 and required sample size 591) with an age range of 18 to 100. A large proportion of the respondents are aged less than 50 (82%) and male (62.15%). The majority of the respondents live in urban areas (60.83%). A total of 61.16% (370/605) of the respondents were willing to accept/take the COVID-19 vaccine. Among the accepted group, only 35.14% showed the willingness to take the COVID-19 vaccine immediately, while 64.86% would delay the vaccination until they are confirmed about the vaccine s efficacy and safety or COVID-19 becomes deadlier in Bangladesh. The regression results showed age, gender, location (urban/rural), level of education, income, perceived risk of being infected with COVID-19 in the future, perceived severity of infection, having previous vaccination experience after age 18, having higher knowledge about COVID-19 and vaccination were significantly associated with the acceptance of COVID-19 vaccines. The research reported a high prevalence of COVID-19 vaccine refusal and hesitancy in Bangladesh.
translated by 谷歌翻译
Network intrusion detection systems (NIDSs) play an important role in computer network security. There are several detection mechanisms where anomaly-based automated detection outperforms others significantly. Amid the sophistication and growing number of attacks, dealing with large amounts of data is a recognized issue in the development of anomaly-based NIDS. However, do current models meet the needs of today's networks in terms of required accuracy and dependability? In this research, we propose a new hybrid model that combines machine learning and deep learning to increase detection rates while securing dependability. Our proposed method ensures efficient pre-processing by combining SMOTE for data balancing and XGBoost for feature selection. We compared our developed method to various machine learning and deep learning algorithms to find a more efficient algorithm to implement in the pipeline. Furthermore, we chose the most effective model for network intrusion based on a set of benchmarked performance analysis criteria. Our method produces excellent results when tested on two datasets, KDDCUP'99 and CIC-MalMem-2022, with an accuracy of 99.99% and 100% for KDDCUP'99 and CIC-MalMem-2022, respectively, and no overfitting or Type-1 and Type-2 issues.
translated by 谷歌翻译
Neural models that do not rely on pre-training have excelled in the keyphrase generation task with large annotated datasets. Meanwhile, new approaches have incorporated pre-trained language models (PLMs) for their data efficiency. However, there lacks a systematic study of how the two types of approaches compare and how different design choices can affect the performance of PLM-based models. To fill in this knowledge gap and facilitate a more informed use of PLMs for keyphrase extraction and keyphrase generation, we present an in-depth empirical study. Formulating keyphrase extraction as sequence labeling and keyphrase generation as sequence-to-sequence generation, we perform extensive experiments in three domains. After showing that PLMs have competitive high-resource performance and state-of-the-art low-resource performance, we investigate important design choices including in-domain PLMs, PLMs with different pre-training objectives, using PLMs with a parameter budget, and different formulations for present keyphrases. Further results show that (1) in-domain BERT-like PLMs can be used to build strong and data-efficient keyphrase generation models; (2) with a fixed parameter budget, prioritizing model depth over width and allocating more layers in the encoder leads to better encoder-decoder models; and (3) introducing four in-domain PLMs, we achieve a competitive performance in the news domain and the state-of-the-art performance in the scientific domain.
translated by 谷歌翻译
Privacy policies provide individuals with information about their rights and how their personal information is handled. Natural language understanding (NLU) technologies can support individuals and practitioners to understand better privacy practices described in lengthy and complex documents. However, existing efforts that use NLU technologies are limited by processing the language in a way exclusive to a single task focusing on certain privacy practices. To this end, we introduce the Privacy Policy Language Understanding Evaluation (PLUE) benchmark, a multi-task benchmark for evaluating the privacy policy language understanding across various tasks. We also collect a large corpus of privacy policies to enable privacy policy domain-specific language model pre-training. We demonstrate that domain-specific pre-training offers performance improvements across all tasks. We release the benchmark to encourage future research in this domain.
translated by 谷歌翻译
While pre-trained language models (LM) for code have achieved great success in code completion, they generate code conditioned only on the contents within the file, i.e., in-file context, but ignore the rich semantics in other files within the same project, i.e., cross-file context, a critical source of information that is especially useful in modern modular software development. Such overlooking constrains code language models' capacity in code completion, leading to unexpected behaviors such as generating hallucinated class member functions or function calls with unexpected arguments. In this work, we develop a cross-file context finder tool, CCFINDER, that effectively locates and retrieves the most relevant cross-file context. We propose CoCoMIC, a framework that incorporates cross-file context to learn the in-file and cross-file context jointly on top of pretrained code LMs. CoCoMIC successfully improves the existing code LM with a 19.30% relative increase in exact match and a 15.41% relative increase in identifier matching for code completion when the cross-file context is provided.
translated by 谷歌翻译
The number of international benchmarking competitions is steadily increasing in various fields of machine learning (ML) research and practice. So far, however, little is known about the common practice as well as bottlenecks faced by the community in tackling the research questions posed. To shed light on the status quo of algorithm development in the specific field of biomedical imaging analysis, we designed an international survey that was issued to all participants of challenges conducted in conjunction with the IEEE ISBI 2021 and MICCAI 2021 conferences (80 competitions in total). The survey covered participants' expertise and working environments, their chosen strategies, as well as algorithm characteristics. A median of 72% challenge participants took part in the survey. According to our results, knowledge exchange was the primary incentive (70%) for participation, while the reception of prize money played only a minor role (16%). While a median of 80 working hours was spent on method development, a large portion of participants stated that they did not have enough time for method development (32%). 25% perceived the infrastructure to be a bottleneck. Overall, 94% of all solutions were deep learning-based. Of these, 84% were based on standard architectures. 43% of the respondents reported that the data samples (e.g., images) were too large to be processed at once. This was most commonly addressed by patch-based training (69%), downsampling (37%), and solving 3D analysis tasks as a series of 2D tasks. K-fold cross-validation on the training set was performed by only 37% of the participants and only 50% of the participants performed ensembling based on multiple identical models (61%) or heterogeneous models (39%). 48% of the respondents applied postprocessing steps.
translated by 谷歌翻译
Bayesian networks (BNs) are a widely used graphical model in machine learning for representing knowledge with uncertainty. The mainstream BN structure learning methods require performing a large number of conditional independence (CI) tests. The learning process is very time-consuming, especially for high-dimensional problems, which hinders the adoption of BNs to more applications. Existing works attempt to accelerate the learning process with parallelism, but face issues including load unbalancing, costly atomic operations and dominant parallel overhead. In this paper, we propose a fast solution named Fast-BNS on multi-core CPUs to enhance the efficiency of the BN structure learning. Fast-BNS is powered by a series of efficiency optimizations including (i) designing a dynamic work pool to monitor the processing of edges and to better schedule the workloads among threads, (ii) grouping the CI tests of the edges with the same endpoints to reduce the number of unnecessary CI tests, (iii) using a cache-friendly data storage to improve the memory efficiency, and (iv) generating the conditioning sets on-the-fly to avoid extra memory consumption. A comprehensive experimental study shows that the sequential version of Fast-BNS is up to 50 times faster than its counterpart, and the parallel version of Fast-BNS achieves 4.8 to 24.5 times speedup over the state-of-the-art multi-threaded solution. Moreover, Fast-BNS has a good scalability to the network size as well as sample size. Fast-BNS source code is freely available at https://github.com/jjiantong/FastBN.
translated by 谷歌翻译
Bayesian networks (BNs) are attractive, because they are graphical and interpretable machine learning models. However, exact inference on BNs is time-consuming, especially for complex problems. To improve the efficiency, we propose a fast BN exact inference solution named Fast-BNI on multi-core CPUs. Fast-BNI enhances the efficiency of exact inference through hybrid parallelism that tightly integrates coarse- and fine-grained parallelism. We also propose techniques to further simplify the bottleneck operations of BN exact inference. Fast-BNI source code is freely available at https://github.com/jjiantong/FastBN.
translated by 谷歌翻译
Skeleton-based Motion Capture (MoCap) systems have been widely used in the game and film industry for mimicking complex human actions for a long time. MoCap data has also proved its effectiveness in human activity recognition tasks. However, it is a quite challenging task for smaller datasets. The lack of such data for industrial activities further adds to the difficulties. In this work, we have proposed an ensemble-based machine learning methodology that is targeted to work better on MoCap datasets. The experiments have been performed on the MoCap data given in the Bento Packaging Activity Recognition Challenge 2021. Bento is a Japanese word that resembles lunch-box. Upon processing the raw MoCap data at first, we have achieved an astonishing accuracy of 98% on 10-fold Cross-Validation and 82% on Leave-One-Out-Cross-Validation by using the proposed ensemble model.
translated by 谷歌翻译
大数据和深度学习的结合是一项破坏世界的技术,如果正确使用,可以极大地影响任何目标。随着深度学习技术中大量医疗保健数据集和进步的可用性,系统现在可以很好地预测任何健康问题的未来趋势。从文献调查中,我们发现SVM用于预测心力衰竭的情况,而无需关联客观因素。利用电子健康记录(EHR)中重要历史信息的强度,我们利用长期记忆(LSTM)建立了一个智能和预测的模型,并根据该健康记录预测心力衰竭的未来趋势。因此,这项工作的基本承诺是使用基于患者的电子药用信息的LSTM来预测心脏的失败。我们已经分析了一个数据集,该数据集包含在Faisalabad心脏病学研究所和Faisalabad(巴基斯坦旁遮普邦)的盟军医院收集的299例心力衰竭患者的病历。这些患者由105名女性和194名男性组成,年龄在40岁和95岁之间。该数据集包含13个功能,这些功能报告了负责心力衰竭的临床,身体和生活方式信息。我们发现我们的分析趋势越来越多,这将有助于促进心中预测领域的知识。
translated by 谷歌翻译